According to Wikipedia dizygotic (fraternal) twins usually occur when two fertilized eggs are implanted in the uterus wall at the same time while monozygotic (identical) twins occur when a single egg is fertilized to form one zygote (hence, "monozygotic") which then divides into two separate embryos.
Fraternal twins can be mm, mf, fm or ff (where m = male and f = female), identical twins can only be mm, or ff. For the sake of this example let's say the probability of each option is equal, so P(mm) = P(mf) = P(fm) = P(ff) = 0.25 for Fraternal twins and P(mm) = P(ff) = 0.5 for identical twins. The probability that twins are identical is P(I) = 0.1 so P(F) = 0.9 (probability of Fraternal), assuming twins must be either identical or fraternal (not strictly true but let's not make things too complicated). If we have two brothers who are twins what is the probability that they are identical twins? The nonBaysean answer might be 0.1 or 10%. But this is incorrect. The Baysean formula gives the correct answer: The probability of identical twins given that both twins are brothers written as P(IB) = P(BI)P(I)/P(B) and since we are assuming twins must be either identical or fraternal then: P(B) = P(BI)P(I) + P(BF)P(F) substituting this into the above gives: P(IB) = P(BI)P(I)/P(BI)P(I) + P(BF)P(F) then putting in the numbers gives (0.5 x 0.1)/((0.5 x 0.1) + (0.25 x 0.9)) = 2/11 (about 18.2%)  so the knowledge that both twins are male makes the probability they are identical higher.
0 Comments
Leave a Reply. 
This blog includes:Scripts mainly in Python with a few in R covering NLP, Pandas, Matplotlib and others. See the home page for links to some of the scripts. Also includes some explanations of basic data science terminology. Archives
October 2017
